libTheSky
Routines to compute sky positions of Sun, Moon, planets and more
All Namespaces Files Functions Variables Pages
visibility.f90
Go to the documentation of this file.
1!> \file visibility.f90 Contains procedures to determine the visibility of objects for libTheSky
2
3
4! Copyright (c) 2002-2025 Marc van der Sluys - Nikhef/Utrecht University - marc.vandersluys.nl
5!
6! This file is part of the libTheSky package,
7! see: https://libthesky.sf.net/
8!
9! This is free software: you can redistribute it and/or modify it under the terms of the
10! European Union Public Licence 1.2 (EUPL 1.2).
11!
12! This software is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
13! without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
14! See the EU Public Licence for more details.
15!
16! You should have received a copy of the European Union Public Licence along with this code.
17! If not, see <https://www.eupl.eu/1.2/en/>.
18
19
20! best_planet_xsmag: Find the moment (JD) of best excess magnitude (mag-lim.mag) for a planet
21! best_planet_visibility: Find the best moment (JD) to observe a planet on a given day (JD)
22! planet_visibility_tonight: Compute when a given planet is visible in a given night
23! comet_invisible: Determine whether a comet is invisible, given a magnitude and altitude limit
24!
25! transitalt: Compute the transit altitude for a given geographic latitude and declination
26! best_obs_date_ra: Compute the best date to observe an object with a given right ascension
27! get_dra_obj: Compute the difference between a given right ascension and the RA of the Sun
28!
29! airmass: Compute the airmass for a celestial object with a given TRUE altitude
30! airmass_la: Compute the airmass for a celestial object with given APP alt; low-accuracy alt. for airmass()
31! extinction_magPam: Compute the extinction in magnitudes per unit airmass for an observer with given elevation
32! extinction_mag: Compute the extinction in magnitudes for a given object altitude and observer elevation
33! extinction_fac: Compute the extinction factor for an observer with given elevation and object with given altitude
34!
35! limmag_full: Calculate limiting magnitude, full function
36! limmag_extinction: Calculate limiting magnitude based on Sun altitude and Moon phase
37! limmag_skyBrightness: Calculate sky brightness based on Sun altitude and Moon phase
38! limmag_jd: Calculate limiting magnitude based on JD and object altitude, wrapper for limmag_full()
39! limmag_zenith_jd: Calculate limiting magnitude for the local zenith, based on JD and observer's location
40! limmag_jd_pl: Calculate limiting magnitude based on JD and planet ID, wrapper for limmag_jd()
41! limmag_sun_airmass: Calculate limiting magnitude based on Sun altitude and object altitude (airmass); assume New Moon
42! limmag_sun: Calculate limiting magnitude, based on the altitude of the Sun only
43!
44! pl_xsmag: Compute the excess magnitude (mag-lim.mag) for planet pl at JD, considering Sun, Moon and airmass
45! pl_xsmag_pl: Compute the excess magnitude at JD, wrapper for pl_xsmag() for solvers
46! pl_xsmag_la: Compute the excess magnitude, considering airmass and Sun altitude only
47! pl_xsmag_la_pl: Compute the excess magnitude, wrapper for pl_xsmag_la() for solvers
48!
49! aperture: Aperture needed to observe an object with given excess magnitude
50! skybrightness_mas2_from_mlim: Convert naked-eye limiting magnitude to sky surface brightness in magnitudes per square arcsecond
51! skybrightness_mlim_from_mas2: Convert sky surface brightness in magnitudes per square arcsecond to naked-eye limiting magnitude
52! skybrightness_mlim_from_cdm2: Convert sky brightness in candela per square meter to naked-eye visual limiting magnitude
53! skybrightness_cdm2_from_mlim: Convert limiting visual magnitude to sky brightness in candela per square meter
54! skybrightness_cdm2_from_nL: Convert sky brightness in nanolambert to candela per square meter
55! skybrightness_nL_from_cdm2: Convert sky brightness in candela per square meter to nanolambert
56
57!***********************************************************************************************************************************
58!> \brief Procedures to determine the visibility of objects
59
61 implicit none
62 save
63
64contains
65
66
67 !*********************************************************************************************************************************
68 !> \brief Find the moment (JD) of optimal excess magnitude for a planet, i.e. the lowest mag - lim.mag
69 !!
70 !! \param jdin Initial guess for the moment of best excess magnitude (input)
71 !! \param plID Planet to compute visibility for (0-Moon, 1-Mercury, etc.)
72 !! \param jdout Moment of best excess magnitude (output)
73 !! \param xsmag Excess magnitude at that moment (magnitude - limiting magnitude; <0: ~visible to the naked eye) (output, optional)
74 !! \param rsCWarn Print convergence warnings in riset() (input, optional; default = true)
75
76 subroutine best_planet_xsmag(jdin,plID, jdout, xsmag, rsCWarn)
77 use sufr_kinds, only: double
78 use sufr_date_and_time, only: cal2jd
79 use sufr_solvers, only: minimum_solver
80
81 use thesky_planetdata, only: pl0
82 use thesky_datetime, only: gettz
83
84 implicit none
85 real(double), intent(in) :: jdin
86 integer, intent(in) :: plID
87 real(double), intent(out) :: jdout
88 real(double), intent(out), optional :: xsmag
89 logical, intent(in), optional :: rsCWarn
90
91 integer :: status
92 real(double) :: tz, jd1,jd2, plvis(2), lxsmag
93 logical :: lrsCWarn
94
95 lrscwarn = .true. ! riset() convergence warnings on by default
96 if(present(rscwarn)) lrscwarn = rscwarn
97
98 call planet_visibility_tonight(jdin, plid, 0.d0, 0.d0, 11, plvis, rscwarn=lrscwarn) ! Sun<0d; Planet>0d, comp=11 twl/today
99
100 tz = gettz(jdin)
101 jd1 = floor(jdin+0.5d0) - 0.5d0 + (plvis(1)-tz)/24.d0
102 jd2 = floor(jdin+0.5d0) - 0.5d0 + (plvis(2)-tz)/24.d0
103 if(plvis(1).gt.12.d0) jd1 = jd1 - 1.d0 ! After noon, use the previous day
104 if(plvis(2).gt.12.d0) jd2 = jd2 - 1.d0
105
106 pl0 = plid ! Needed by pl_xsmag_pl()
107 lxsmag = minimum_solver(pl_xsmag_pl, jd1, (jd1+jd2)/2.d0, jd2, 1.d-3, jdout, status=status) ! Use full routine
108
109 if(present(xsmag)) xsmag = lxsmag
110
111 end subroutine best_planet_xsmag
112 !*********************************************************************************************************************************
113
114
115
116 !*********************************************************************************************************************************
117 !> \brief Find a rough indication for the best moment (JD) to observe a planet on a given day (jd). Start out by demanding
118 !! that Sun alt < -6deg, but relax this if problematic. This often results in the moment where Sun alt is indeed -6deg.
119 !!
120 !! \param jd Julian day to compute best moment for
121 !! \param pl Planet to compute visibility for (0-Moon, 1-Mercury, etc.)
122 !!
123 !! \retval best_planet_visibility Best moment to observe the planet (JD)
124
125 function best_planet_visibility(jd,pl)
126 use sufr_kinds, only: double
127 use sufr_constants, only: r2d
128 use sufr_date_and_time, only: jd2cal,cal2jd
129 use sufr_angles, only: rv12
130
131 use thesky_local, only: tz
132 use thesky_riset, only: riset
135
136 implicit none
137 real(double), intent(in) :: jd
138 integer, intent(in) :: pl
139
140 integer :: yr,mn
141 real(double) :: best_planet_visibility,dy,jd1, sun_maxalt,smaxalt
142 real(double) :: srt,stt,sst,srh,sta,ssh, mrt,mtt,mst,mrh,mta,msh, sundat(nplanpos)
143
144 ! Maximum altitude of the Sun (starting value, may be relaxed):
145 sun_maxalt = -6.d0 ! ~ -6, -9, -12, the first gives nicer 'twilight' maps?
146
147 call riset(jd,pl, mrt,mtt,mst, mrh,mta,msh, 0.d0) ! Planet
148
149 ! First, try moment of planet transit:
150 call jd2cal(jd,yr,mn,dy)
151 dy = floor(dy) + (mtt-tz)/24.d0
152 jd1 = cal2jd(yr,mn,dy)
153
154 call planet_position(jd1,3) ! Sun
155 sundat = planpos
156
157 if(sundat(30)*r2d.lt.sun_maxalt) then ! It is "night" at planet transit
158 call planet_position(jd1,pl) ! Planet
160 return
161 end if
162
163
164 ! Then try relaxed conditions for the Sun, and demand that planet is at least half as far above the horizon as the Sun is below
165 ! (can presumably still see Venus with Sun at -4d and Venus at +2 ...?)
166 smaxalt = 2*sun_maxalt
167
168 do while(smaxalt.lt.-0.25d0)
169 smaxalt = smaxalt/2.d0 ! Relax conditions
170 call riset(jd,3, srt,stt,sst, srh,sta,ssh, smaxalt) ! Sun
171
172 if(abs(rv12(mtt-sst)).lt.abs(rv12(mtt-srt))) then ! Evening
173 dy = floor(dy) + (sst-tz)/24.d0
174 else ! Morning
175 dy = floor(dy) + (srt-tz)/24.d0
176 end if
177
178 jd1 = cal2jd(yr,mn,dy)
179 call planet_position(jd1,pl) ! Planet
180 if(planpos(30)*r2d.gt.-smaxalt/2.d0) exit
181 end do
182
184
185 end function best_planet_visibility
186 !*********************************************************************************************************************************
187
188
189
190
191
192 !*********************************************************************************************************************************
193 !> \brief Compute when a given planet is visible in a given night
194 !!
195 !! \param jd Julian day for calculation
196 !! \param pl Planet ID (1-2, 4-8 for Mer-Ven, Mar-Nep)
197 !! \param sunAlt Sun altitude below which planet is visible (deg; e.g. -6.d0)
198 !! \param plalt Planet altitude above which planet is visible (deg; e.g. 5.d0)
199 !! \param comp Compute: 1-compute twilight/planet at plalt events only, 2-include actual rise/set times
200 !! 11, 12 = 1, 2 + compute only for today, not tomorrow
201 !!
202 !! \param plvis Planet visibility times (hours): 1-begin, 2-end; plvis(1)*plvis(2) = 0 when invisible (output)
203 !! \param plazs Planet visibility azimuths (rad): 1-begin of visibility, 2-end of visibility (output)
204 !!
205 !! \param rts "Rise times": 1-twilight (Sun at sunAlt), 2-Sun rise/set, 4-planet at plalt, 5-planet rise/set (output)
206 !! \param tts Transit times: 1-2, of Sun, 4-5 of planet (output)
207 !! \param sts "Set times": 1-twilight (Sun at sunAlt), 2-Sun rise/set, 4-planet at plalt, 5-planet rise/set (output)
208 !!
209 !! \param ras Rise azimuths: 1-2, of Sun, 4-5 of planet (output)
210 !! \param tas Transit altitudes: 1-2, of Sun, 4-5 of planet (output)
211 !! \param sas Set azimuths: 1-2, of Sun, 4-5 of planet (output)
212 !!
213 !! \param rsCWarn Print convergence warnings in riset() (optional; default = true)
214
215 subroutine planet_visibility_tonight(jd, pl, sunAlt, plalt, comp, plvis, plazs, rts, tts, sts, ras, tas, sas, rsCWarn)
216 use sufr_kinds, only: double
217 use sufr_constants, only: r2d
218 use sufr_numerics, only: deq, deq0
219 use sufr_angles, only: rv12
220 use sufr_sorting, only: sorted_index_list
221
222 use thesky_riset, only: riset
223
224 implicit none
225 real(double), intent(in) :: jd, sunAlt, plalt
226 integer, intent(in) :: pl, comp
227 real(double), intent(out) :: plvis(2)
228 real(double), intent(out), optional :: plazs(2), rts(5), tts(5), sts(5), ras(5), tas(5), sas(5)
229 logical, intent(in), optional :: rsCWarn
230
231 integer :: irs, ix, maxi, ind(4), oldComp, firstCall
232 real(double) :: alt, times(4),azs(4), lrts(5), ltts(5), lsts(5), lras(5),ltas(5),lsas(5)
233 real(double) :: oldJD, oldSunAlt, oldSunData(6,2)
234 logical :: sup,pup,pvis,pvisold, lrsCWarn
235
236 save firstcall, oldcomp, oldjd, oldsunalt, oldsundata
237
238 lrts=0.d0; ltts=0.d0; lsts=0.d0; lras=0.d0;ltas=0.d0;lsas=0.d0; plvis=0.d0
239 if(present(plazs)) plazs=0.d0
240
241 lrscwarn = .true. ! riset() convergence warnings on by default
242 if(present(rscwarn)) lrscwarn = rscwarn
243
244 ! On day JD, we want set times for JD and rise times for JD+1:
245
246 ! Sun:
247 maxi = 1 ! exclude rise/set times - (1,4)
248 if(comp.eq.2.or.comp.eq.12) maxi = 2 ! include rise/set times - (2,5)
249 alt = sunalt
250 do irs=1,maxi ! 1-twilight (sun @sunAlt), 2-Sun rise/set
251
252 if( firstcall.eq.12345 .and. comp.eq.oldcomp .and. deq(jd,oldjd) .and. deq(sunalt,oldsunalt)) then
253 ! Restore old Sun data w/o calculation:
254 lrts(irs) = oldsundata(1, irs)
255 ltts(irs) = oldsundata(2, irs)
256 lsts(irs) = oldsundata(3, irs)
257 lras(irs) = oldsundata(4, irs)
258 ltas(irs) = oldsundata(5, irs)
259 lsas(irs) = oldsundata(6, irs)
260 else
261 if(irs.eq.2) alt = 0.d0
262
263 ! Compute and store times for tonight:
264 call riset(jd, 3, lrts(irs), ltts(irs), lsts(irs), lras(irs), ltas(irs), lsas(irs), alt, for_night=.true., cwarn=lrscwarn)
265 oldsundata(1:6, irs) = [lrts(irs), ltts(irs), lsts(irs), lras(irs), ltas(irs), lsas(irs)]
266 end if
267
268 end do ! irs=1,2
269
270 ! Save the current input parameters for the next call:
271 firstcall = 12345
272 oldcomp = comp
273 oldjd = jd
274 oldsunalt = sunalt
275
276
277 ! Planet:
278 maxi = 4 ! exclude rise/set times - (1,4)
279 if(comp.eq.2.or.comp.eq.12) maxi = 5 ! include rise/set times - (2,5)
280 alt = plalt
281 do irs=4,maxi ! 4-planet @plalt, 5-planet rise/set
282 if(irs.eq.5) alt = 0.d0
283
284 ! Tonight:
285 call riset(jd, pl, lrts(irs), ltts(irs), lsts(irs), lras(irs), ltas(irs), lsas(irs), alt, for_night=.true., cwarn=lrscwarn)
286
287 ! If time==0.0 from riset(for_night=.true.), the time lies around noon:
288 if(deq0(lrts(irs))) lrts(irs) = -12.d0 ! Rise at the beginning of the "night" -> probably still up at dusk
289 ! if(deq0(ltts(irs))) ltts(irs) = 12.d0
290 if(deq0(lsts(irs))) lsts(irs) = 12.d0 ! Set at the end of the "night" (-> was likely up at dawn)
291
292 end do ! irs=4,5
293
294
295
296 ! When is the planet visible?
297 ! plvis(1): time planet becomes visible, plvis(2): time planet becomes invisible
298 ! [ SunRise, SunSet, PlanetRise, PlanetSet]
299 times = [rv12(lrts(1)), rv12(lsts(1)), rv12(lrts(4)), rv12(lsts(4))] ! rv12: -12 - 12h; noon - noon: Sun rise,set, pl r,s
300 azs = [lras(1), lsas(1), lras(4), lsas(4)]
301 call sorted_index_list(times,ind)
302
303 ! Special case: ind = [2 4 3 1] - Ss Ps Pr Sr: Planet is visible twice. Program takes latter, make sure it's the longest:
304 if(ind(1).eq.2.and.ind(2).eq.4.and.ind(3).eq.3.and.ind(4).eq.1 .and. times(4)-times(2).gt.times(1)-times(3)) then
305 ind = [3,1,2,4]
306
307 ! If the planet is invisible for less than an hour, ignore it:
308 if(times(2)-times(1) .lt. 1.d0) times = [times(2),times(2), times(2),times(1)] ! Only the last two array elements count
309 end if
310
311
312
313 ! Starting at noon, Sun is up, planet may be:
314 sup = .true. ! Sun up at noon
315 pup = .false. ! Planet not up at noon?
316
317 if(pl.gt.9.and.abs(lrts(4)*lsts(4)).lt.1.d-20) then ! Comet or asteroid doesn't "rise" or "set" (cross plalt)
318 if(ltas(4)*r2d.gt.plalt) then ! Transit alt > plalt: object is always "up"
319 plvis(1) = rv12(lsts(1)) ! Planet becomes visible at evening twilight
320 plvis(2) = rv12(lrts(1)) ! Planet becomes invisible at morning twilight
321
322 if(present(plazs)) then
323 plazs(1) = lsas(1) ! Azimuth where planet becomes visible at evening twilight
324 plazs(2) = lras(1) ! Azimuth where planet becomes invisible at morning twilight
325 end if
326 else
327 plvis = 0.d0 ! Planet is never visible
328 if(present(plazs)) plazs = 0.d0
329 end if
330 return
331 end if
332
333 if(rv12(lrts(4)).ge.0.d0 .and. rv12(lrts(4)).gt.rv12(lsts(4))) pup = .true. ! Planet up at noon
334
335 pvis = pup.and..not.sup ! planet visible - should be false
336 pvisold = pvis ! idem
337
338 do ix=1,4
339 select case(ind(ix))
340 case(1) ! Sunrise/dawn
341 sup = .true.
342 case(2) ! Sunset/dusk
343 sup = .false.
344 case(3) ! Planet rise
345 pup = .true.
346 case(4) ! Planet set
347 pup = .false.
348 end select
349 pvis = pup.and..not.sup ! Planet visible?
350
351 if(pvis.and..not.pvisold) then ! Planet becomes visible
352 plvis(1) = times(ind(ix))
353 if(present(plazs)) plazs(1) = azs(ind(ix))
354 end if
355 if(.not.pvis.and.pvisold) then ! Planet becomes invisible
356 plvis(2) = times(ind(ix))
357 if(present(plazs)) plazs(2) = azs(ind(ix))
358 end if
359
360 pvisold = pvis
361 end do
362
363 ! Assign values to optional dummy arguments:
364 if(present(rts)) rts = lrts
365 if(present(tts)) tts = ltts
366 if(present(sts)) sts = lsts
367
368 if(present(ras)) ras = lsas ! Rise azimuths
369 if(present(tas)) tas = ltas ! Tranist altitudes
370 if(present(sas)) sas = lras ! Set azimuths
371
372 end subroutine planet_visibility_tonight
373 !*********************************************************************************************************************************
374
375
376
377
378
379 !*********************************************************************************************************************************
380 !> \brief Cheap function to determine whether a comet is invisible at a given time, based on a magnitude and altitude limit
381 !!
382 !! \param jd Julian day for calculation
383 !! \param cometID Comet ID
384 !! \param mlim Maximum magnitude, below which the comet is defined as visible (deg)
385 !! \param minalt Minimum transit altitude, above which the comet is defined as visible (deg)
386 !!
387 !! \retval comet_invisible Comet is invisible (true/false)
388 !!
389 !! \note The comet may still be invisible if comet_invisible=.false., e.g. when it's too close to the Sun
390
391 function comet_invisible(jd, cometID, mlim, minalt)
392 use sufr_kinds, only: double
393 use sufr_constants, only: r2d, jd2000
394 use thesky_planetdata, only: planpos
395 use thesky_comets, only: cometgc
397 use thesky_local, only: lat0
399
400 implicit none
401 real(double), intent(in) :: jd, mlim, minalt
402 integer, intent(in) :: cometid
403 real(double) :: tjm, hcr,gcl,gcb,delta, magn, eps, ra,dec, maxalt
404 logical :: comet_invisible
405
406 comet_invisible = .false.
407
408 tjm = (jd-jd2000)/365250.d0 ! Julian Millennia after 2000.0 (not dyn. time - approx)
409 call cometgc(tjm,tjm, cometid, hcr,gcl,gcb,delta)
410
411 ! Typical difference with full method: ~10^-4 mag:
412 if(cometdiedatp(cometid) .and. jd.gt.cometelems(cometid,7)) then ! Comet died at perihelion and is now dead
413 magn = 99.9d0
414 else
415 magn = cometelems(cometid,8) + 5*log10(delta) + 2.5d0*cometelems(cometid,9)*log10(hcr) ! m = H + 5log(d) + 2.5*G*log(r)
416 end if
417 if(magn.gt.mlim) then
418 comet_invisible = .true.
419 return
420 end if
421
422 eps = planpos(48)
423 call ecl_2_eq(gcl,gcb,eps, ra,dec) ! RA, Dec
424
425 maxalt = transitalt(lat0, dec) * r2d
426 if(maxalt.lt.minalt) comet_invisible = .true.
427
428 end function comet_invisible
429 !*********************************************************************************************************************************
430
431
432
433 !*********************************************************************************************************************************
434 !> \brief Compute the transit altitude of an object with given declination for an observer with a given geographic latitude
435 !!
436 !! \param lat Geographic latitude of the observer (-pi/2 - pi/2; rad)
437 !! \param dec Declination of the object (-pi/2 - pi/2; rad)
438 !!
439 !! \retval transitalt Transit altitude (rad)
440
441 function transitalt(lat, dec)
442 use sufr_kinds, only: double
443 implicit none
444 real(double), intent(in) :: lat, dec
445 real(double) :: transitalt
446
447 transitalt = asin(sin(lat)*sin(dec) + cos(lat)*cos(dec))
448
449 end function transitalt
450 !*********************************************************************************************************************************
451
452
453 !*********************************************************************************************************************************
454 !> \brief Compute the best date in the year to observe an object with a given right ascension
455 !!
456 !! \param year Year (CE)
457 !! \param RA Right ascension of the object
458 !! \param accuracy Get an accurate (but more expensive) result: 0-no, 1-yes
459 !! \param mon Month of year (output)
460 !! \param dy Day of month (output)
461
462 subroutine best_obs_date_ra(year, RA, accuracy, mon, dy)
463 use sufr_kinds, only: double
464 use sufr_constants, only: pi
465 use sufr_date_and_time, only: doy2md, cal2jd, jd2cal
466 use sufr_solvers, only: root_solver
467
468 implicit none
469 integer, intent(in) :: year,accuracy
470 real(double), intent(in) :: RA
471 integer, intent(out) :: mon,dy
472
473 integer :: yr,best_obs_doy0,doy1
474 real(double) :: jd0,lRA,dRA,djd,jd1,dy1
475
476 common /best_obs_ra/ dra,lra
477
478 lra = ra
479 dra = pi ! Find rev2(lRA-sunRA-dRA) = 0 -> dRA=pi = 'opposition'
480 yr = year
481
482 best_obs_doy0 = 266 ! Approximate doy of opposition of RA=0
483 doy1 = mod(nint(lra/0.017202791805d0) + best_obs_doy0 + 10*366,366) ! Cheap day of year, +- 5-7? days
484 call doy2md(doy1, yr,mon,dy)
485
486 if(accuracy.ge.1) then
487 jd0 = cal2jd(yr,mon,dble(dy))
488 djd = 10.d0
489
490 jd1 = root_solver(get_dra_obj, jd0-djd,jd0+djd, 1.d-1)
491 call jd2cal(jd1,yr,mon,dy1)
492 dy = nint(dy1)
493 end if
494
495 end subroutine best_obs_date_ra
496 !*********************************************************************************************************************************
497
498 !*********************************************************************************************************************************
499 !> \brief Compute the difference between a given right ascension and the RA of the Sun, used privately by best_obs_date_ra()
500 !!
501 !! \param jd Julian day
502 !! \retval get_dRA_obj Difference between a given right ascension and the RA of the Sun (rad)
503 !!
504 !! \note
505 !! - Get (RA_obj - RA_sun) for object with RA ra, passed via the common block best_obs_RA
506
507 function get_dra_obj(jd)
508 use sufr_kinds, only: double
509 use sufr_angles, only: rev2
510
512 use thesky_planetdata, only: planpos
513
514 implicit none
515 real(double), intent(in) :: jd
516 real(double) :: get_dra_obj,dra,ra,sunra
517 common /best_obs_ra/ dra,ra
518
519 call planet_position(jd,3) ! Compute Sun position
520 sunra = planpos(5) ! Sun's right ascension
521 get_dra_obj = rev2(ra - sunra - dra)
522
523 end function get_dra_obj
524 !*********************************************************************************************************************************
525
526
527 !*********************************************************************************************************************************
528 !> \brief Compute the airmass for a celestial object with a given TRUE altitude
529 !!
530 !! \param alt TRUE altitude of object (radians)
531 !! \retval airmass The airmass (-)
532 !!
533 !! \note
534 !! - Results are 1 <= airmass <~ 38.35; return ~1000 for h<-34'
535 !! - Maximum supposed error (at the horizon) of 0.0037 air mass
536 !!
537 !! \see Young (1994); https://en.wikipedia.org/wiki/Air_mass_%28astronomy%29#Interpolative_formulas
538
539 function airmass(alt)
540 use sufr_kinds, only: double
541 use sufr_constants, only: am2r
542
543 implicit none
544 real(double), intent(in) :: alt
545 real(double) :: airmass,sinh,sinh2
546
547 if(alt.lt.-34*am2r) then ! h<-34' - true altitude can be <0
548 airmass = 1000.d0 * (0.15d0 + abs(alt)) ! Very bad (adds at least ~30 magnitudes due to extinction),
549 ! but still worse when farther below the horizon - for solvers
550 else
551 sinh = sin(alt)
552 sinh2 = sinh**2
553 airmass = (1.002432d0*sinh2 + 0.148386d0*sinh + 0.0096467d0) / &
554 (sinh2*sinh + 0.149864d0*sinh2 + 0.0102963d0*sinh + 0.000303978d0)
555 airmass = max( airmass, 1.d0 )
556 end if
557
558 end function airmass
559 !*********************************************************************************************************************************
560
561
562 !*********************************************************************************************************************************
563 !> \brief Compute the airmass for a celestial object with a given apparent altitude; low-accuracy alternative for airmass()
564 !!
565 !! \param alt Apparent altitude of object (radians)
566 !! \retval airmass_la The airmass (-)
567 !!
568 !! \note
569 !! - Results are 1 <= airmass <~ 37.92; return ~1000 for h<0
570 !!
571 !! \see Kasten and Young (1989); http://en.wikipedia.org/wiki/Airmass_%28astronomy%29#Interpolative_formulas
572
573 function airmass_la(alt)
574 use sufr_kinds, only: double
575 use sufr_constants, only: pio2, r2d
576
577 implicit none
578 real(double), intent(in) :: alt
579 real(double) :: airmass_la,z,zdeg
580
581 if(alt.lt.0.d0) then
582 airmass_la = 1000.d0 * (0.15d0 + abs(alt)) ! Very bad (adds at least ~30 magnitudes due to extinction),
583 ! but still worse when farther below the horizon - for solvers
584 else
585 z = min(pio2 - alt, pio2) ! Zenith angle
586 zdeg = z*r2d
587 airmass_la = max( 1.d0 / ( cos(z) + 0.50572d0*(96.07995d0-zdeg)**(-1.6364d0) ) , 1.d0 )
588
589 end if
590
591 end function airmass_la
592 !*********************************************************************************************************************************
593
594
595 !*********************************************************************************************************************************
596 !> \brief Compute the extinction in magnitdes per unit airmass for an observer with given elevation
597 !!
598 !! \param ele Evelation of the observer above sea level (metres)
599 !! \retval extinction_magPam Extinction (magnitdes per unit airmass)
600 !!
601 !! \note
602 !! - The magnitude of an object corrected for airmass should be m' = m + extinction_magPam(ele) * airmass(alt)
603 !! (see function extinction_mag())
604 !! - This assumes night vision, using the rods in the human eye's retina. Hence, this will not hold for the Sun!
605 !! (There is some correspondence when only considering ~420-580 nm, which is roughly the sensitivity band of the rods.)
606 !!
607 !! \see Green, ICQ 14, 55 (1992), http://www.icq.eps.harvard.edu/ICQExtinct.html, (for lambda=510 nm!), based on
608 !! Hayes & Latham, ApJ 197, 593 (1975): http://esoads.eso.org/abs/1975ApJ...197..593H (wavelength dependent, for Wega)
609
610 function extinction_magpam(ele)
611 use sufr_kinds, only: double
612
613 implicit none
614 real(double), intent(in) :: ele
615 real(double) :: extinction_magpam, aoz,aray,aaer
616
617 aoz = 0.016d0 ! Ozone (Schaefer 1992)
618 aray = 0.1451d0 * exp(-ele/7996.d0) ! Rayleigh scattering (for lambda=510 nm), Eq.2
619 aaer = 0.120d0 * exp(-ele/1500.d0) ! Aerosol scattering (for lambda = 0.51 micron), Eq.4
620
621 extinction_magpam = aoz + aray + aaer ! Total extinction in magnitudes per unit air mass (~0.2811 at sea level)
622
623 end function extinction_magpam
624 !*********************************************************************************************************************************
625
626
627
628 !*********************************************************************************************************************************
629 !> \brief Compute the extinction in magnitdes for an observer with given elevation and an object with given TRUE altitude
630 !!
631 !! \param alt Altitude of object (radians)
632 !! \param ele Evelation of the observer above sea level (metres; optional)
633 !! \retval extinction_mag Extinction (magnitudes)
634 !!
635 !! \note - The magnitude of an object corrected for airmass should be m' = m + extinction_mag(alt,ele)
636 !! - Assumed is the response of the rods in the human retina, hence night vision
637 !!
638 !! \see Functions extinction_magPam() and airmass()
639
640 function extinction_mag(alt, ele)
641 use sufr_kinds, only: double
642
643 implicit none
644 real(double), intent(in) :: alt
645 real(double), intent(in), optional :: ele
646 real(double) :: extinction_mag, elel
647
648 elel = 0.d0 ! Observer is at sea level by default
649 if(present(ele)) elel = ele ! User-specified observer elevation
650
651 extinction_mag = extinction_magpam(elel) * airmass(alt) ! Extinction in magnitudes per unit air mass x airmass
652
653 end function extinction_mag
654 !*********************************************************************************************************************************
655
656
657
658 !*********************************************************************************************************************************
659 !> \brief Compute the extinction factor for an observer with given elevation and an object with given altitude
660 !!
661 !! \param alt Altitude of object (radians)
662 !! \param ele Evelation of the observer above sea level (metres; optional)
663 !! \retval extinction_fac Extinction factor (-)
664 !!
665 !! \note - extinction_fac = 1: no extinction, extinction_fac > 1 extinction.
666 !! - Hence, the flux, corrected for extinction, should be f' = f / extinction_fac(alt,ele)
667 !! - Assumed is the response of the rods in the human retina, hence night vision
668 !!
669 !! \see function extinction_mag()
670
671 function extinction_fac(alt, ele)
672 use sufr_kinds, only: double
673
674 implicit none
675 real(double), intent(in) :: alt
676 real(double), intent(in), optional :: ele
677 real(double) :: extinction_fac, elel
678
679 elel = 0.d0 ! Observer is at sea level by default
680 if(present(ele)) elel = ele ! User-specified observer elevation
681
682 extinction_fac = 10.d0**( extinction_mag(alt,elel) / 2.5d0) ! Extinction in magnitudes -> factor
683
684 end function extinction_fac
685 !*********************************************************************************************************************************
686
687
688
689 !*********************************************************************************************************************************
690 !> \brief Calculate limiting magnitude based on Sun and Moon positions and phase, and on the altitude of the observed object
691 !!
692 !! \param year Year of observation (for solar cycle)
693 !! \param month Month of observation (for approximate Sun RA)
694 !! \param obsElev Elevation of the observer (m)
695 !! \param obsLat Latitude of the observer (rad)
696 !!
697 !! \param sunAlt Altitude of the Sun (rad)
698 !! \param sunElon Elongation object-Sun (rad)
699 !!
700 !! \param moonPhase Phase of the Moon (fraction)
701 !! \param moonAlt Altitude of the Moon (rad)
702 !! \param moonElon Elongation object-Moon (rad)
703 !!
704 !! \param objAlt Altitude of the observed object (rad)
705 !!
706 !! \param humid Relative humidity (%; optional, default: 70)
707 !! \param airTemp Air temperature (degrees Celsius; optional, default: 10)
708 !! \param snrat Snellen ratio for vision (optional, default: 1)
709 !!
710 !! \param verbosity Verbosity (optional, default: 0=quiet)
711 !!
712 !! \retval limmag_full Limiting magnitude - return >= 99 if the object is below the horizon
713 !!
714 !! \see BASIC program VISLIMIT.BAS by Bradley E. Schaefer, Sky and Telescope, May 1998, p.57,
715 !! in turn based on Schaefer Sky&Tel 78, 522 (1989).
716
717 function limmag_full(year,month, obsElev,obsLat, sunAlt,sunElon, moonPhase,moonAlt,moonElon, objAlt, humid,airTemp,snrat, verbosity)
718 use sufr_kinds, only: double
719
720 implicit none
721 integer, intent(in) :: year, month
722 real(double), intent(in) :: obselev,obslat, sunalt,sunelon, moonphase,moonalt,moonelon, objalt
723 integer, intent(in), optional :: verbosity
724 real(double), intent(in), optional :: humid,airtemp,snrat
725
726 integer :: verb
727 real(double) :: limmag_full, skybr(5),extcoef(5),extmag(5), relhum,temp,sn, c1,c2,th
728
729 if(objalt.lt.0.d0) then
730 limmag_full = 99.d0 - objalt ! Object below the horizon; limiting magnitude meaningless
731 return
732 end if
733
734
735 ! Optional arguments:
736 relhum = 70.d0 ! Relative humidity (%), is higher at night than during the day, annual average at 7:00
737 if(present(humid)) relhum = humid ! in S-E USA ~83%, see http://www.sercc.com/climateinfo/historical/avgrh.html
738
739 temp = 10.d0 ! Temperature (deg.C)
740 if(present(airtemp)) temp = airtemp
741
742 sn = 1.d0 ! Snellen ratio quantifies vision and observing experience
743 if(present(snrat)) sn = snrat
744
745 verb = 0
746 if(present(verbosity)) verb = verbosity ! Verbosity
747
748 ! Compute the extinction and sky brightness:
749 call limmag_extinction(month, obslat,obselev, objalt, relhum,temp, 3,3, extcoef, extmag) ! Compute only V band (3)
750 call limmag_skybrightness(year, sunalt,sunelon, moonphase,moonalt,moonelon, objalt, 3,3, extcoef, skybr) ! Only V band (3)
751
752
753 ! Visual limiting magnitude (V=3 in UBVRI):
754 !> \see Knoll, Tousey and Hulburt, J.Opt.Soc.Am. 36, 480 (1946); Hecht J.Opt.Soc.Am. 37, 59 (1947), Eq.3;
755 !! Schaefer PASP 102, 212 (1990), Eq.2
756 if(skybr(3).lt.1500.d0) then ! 1500 nanoLamberts; log(B) ~ 3.17
757 c1 = 10.d0**(-9.8d0)
758 c2 = 10.d0**(-1.9d0)
759 else
760 c1 = 10.d0**(-8.35d0)
761 c2 = 10.d0**(-5.9d0)
762 end if
763 th = c1*(1.d0 + sqrt(c2*skybr(3)))**2 ! Visual sky brightness in foot-candles
764
765 limmag_full = -16.57d0 - 2.5d0*log10(th) - extmag(3) + 5*log10(sn) ! Limiting visual magnitude (V)
766
767 if(verb>0) then
768 write(*,'(A,F12.5)') 'Extinction coefficient (V band): ', extcoef(3)
769 write(*,'(A,F12.5)') 'Extinction in V magnitudes: ', extmag(3)
770 write(*,'(A,ES12.5)') 'Sky surface brightness (V) in erg/s/cm^2/μ/arcsec^2: ', skybr(3)*1.02d-15 ! Should this be 1.02d-15 iso 1.11d-15? Or 4.54d-16? - http://www.archaeocosmology.org/eng/vislimitbas.htm
771 write(*,'(A,F12.5)') 'Sky surface brightness (V) in nL: ', skybr(3)
772 write(*,'(A,ES12.5)') 'Sky brightness (V) in foot candles: ', th
773 write(*,'(A,F12.5)') 'V magnitude limit: ', limmag_full
774 end if
775
776 end function limmag_full
777 !*********************************************************************************************************************************
778
779
780 !*********************************************************************************************************************************
781 !> \brief Calculate limiting magnitude based on Sun altitude and Moon phase
782 !!
783 !! \param month Month of observation (for approximate Sun RA)
784 !!
785 !! \param obsLat Latitude of the observed (rad)
786 !! \param obsElev Elevation of the observer (m)
787 !!
788 !! \param objAlt Altitude of the observed object (rad)
789 !!
790 !! \param relHum Relative humidity
791 !! \param temp Air temperature
792 !!
793 !! \param band1 First of UBVRI bands to compute (1-5); compute band1-band2
794 !! \param band2 Last of UBVRI bands to compute (1-5); compute band1-band2
795 !!
796 !! \param extCoef Atmospheric extinction for UBVRI (output)
797 !! \param extMag Delta magnitude due to atmospheric extinction for UBVRI (output)
798 !!
799 !! \see BASIC program VISLIMIT.BAS by Bradley E. Schaefer, Sky and Telescope, May 1998, p.57,
800 !! in turn based on Schaefer Sky&Tel 78, 522 (1989).
801
802 subroutine limmag_extinction(month, obsLat,obsElev, objAlt, relHum,temp, band1,band2, extCoef,extMag)
803 use sufr_kinds, only: double
804 use sufr_constants, only: d2r, earthr
805
806 implicit none
807 integer, intent(in) :: month, band1,band2
808 real(double), intent(in) :: obsLat, objAlt, obsElev, relHum, temp
809 real(double), intent(out) :: extCoef(5),extMag(5)
810
811 integer :: iBand, band1l,band2l, sl
812 real(double) :: wa(5), oz(5),wt(5), ra,xg,xa,xo,kr,ka,ko,kw, Re_km, sinObjAlt
813
814 ! UBVRI bands are 1-5:
815 band1l = max(1,band1)
816 band2l = min(5,band2)
817
818 extcoef = 0.d0; extmag = 0.d0
819 wa = [ 0.365d0, 0.44d0, 0.55d0, 0.7d0, 0.9d0 ] ! Gas/aerosols
820 oz = [ 0.000d0, 0.000d0, 0.031d0, 0.008d0, 0.000d0 ] ! Ozone
821 wt = [ 0.074d0, 0.045d0, 0.031d0, 0.020d0, 0.015d0 ]
822
823
824 ra = (month-3)*30*d2r ! Derive a rough Sun RA from the month number
825 sl = nint(obslat/abs(obslat+tiny(obslat))) ! N: +1; S: -1
826
827 ! Airmass for each component:
828 re_km = earthr*1.d-5 ! Earth's radius cm -> km
829 sinobjalt = sin(objalt)
830 xg = 1.d0 / ( sinobjalt + 0.0286d0 * exp(-10.5d0*sinobjalt) ) ! Gas
831 xa = 1.d0 / ( sinobjalt + 0.0123d0 * exp(-24.5d0*sinobjalt) ) ! Aerosol
832 xo = 1.d0 / sqrt( 1.d0 - (cos(objalt)/(1.d0 + (20.d0/re_km)))**2 ) ! Ozone
833
834 ! UBVRI (1-5) extinction for each component:
835 do iband=band1l,band2l
836 kr = 0.1066d0 * exp(-obselev/8200.d0) * (wa(iband)/0.55d0)**(-4)
837 ka = 0.1d0 * (wa(iband)/0.55d0)**(-1.3d0) * exp(-obselev/1500.d0)
838 ka = ka * (1.d0 - 0.32d0/log(relhum/100.d0))**1.33d0 * (1.d0 + 0.33d0 * sl * sin(ra)) ! Correction from http://www.archaeocosmology.org/eng/vislimitbas.htm
839 ko = oz(iband) * (3.d0 + 0.4d0 * (obslat*cos(ra) - cos(3*obslat)) )/3.d0
840 kw = wt(iband) * 0.94d0 * (relhum/100.d0) * exp(temp/15.d0 - obselev/8200.d0)
841
842 extcoef(iband) = kr + kw + ka + ko ! Extinction in magnitudes per unit air mass (?)
843 extmag(iband) = (kr+kw)*xg + ka*xa + ko*xo ! Total extinction in magnitudes (?)
844 end do ! iBand
845
846 end subroutine limmag_extinction
847 !*********************************************************************************************************************************
848
849
850 !*********************************************************************************************************************************
851 !> \brief Calculate sky brightness based on Sun altitude and Moon phase
852 !!
853 !! \param year Year CE (for the solar cycle)
854 !!
855 !! \param objAlt Altitude of the observed object (rad)
856 !! \param moonAlt Moon altitude (rad)
857 !! \param sunAlt Sun altitude (rad)
858 !!
859 !! \param moonPhase Moon illuminated fraction (0-1)
860 !! \param moonElon Moon elongation from observed object (rad)
861 !! \param sunElon Sun elongation from observed object (rad)
862 !!
863 !! \param band1 First of UBVRI bands to compute (1-5); compute band1-band2
864 !! \param band2 Last of UBVRI bands to compute (1-5); compute band1-band2
865 !!
866 !! \param extCoef Extinction for UBVRI
867 !!
868 !! \param skyBr Sky brightness for UBVRI in nanoLambert (output)
869 !!
870 !! \see BASIC program VISLIMIT.BAS by Bradley E. Schaefer, Sky and Telescope, May 1998, p.57,
871 !! in turn based on Schaefer Sky&Tel 78, 522 (1989).
872
873 subroutine limmag_skybrightness(year, sunAlt,sunElon, moonPhase,moonAlt,moonElon, objAlt, band1,band2, extCoef, skyBr)
874 use sufr_kinds, only: double
875 use sufr_constants, only: pi,pi2,pio2, r2d
876 use thesky_moon, only: moonmagn
877
878 implicit none
879 integer, intent(in) :: year, band1,band2
880 real(double), intent(in), value :: objAlt, moonAlt,sunAlt, moonPhase,moonElon, sunElon ! May be called as planpos()
881 real(double), intent(in) :: extCoef(5)
882 real(double), intent(out) :: skyBr(5)
883
884 integer :: iBand, band1l,band2l
885 real(double) :: mo(5),bo(5),cm(5),ms(5), objAM,moonAM,sunAM,bn, moonPA,mm,c3, moonElonM, fm,bm,bt,c4,fs,bd
886
887 ! UBVRI bands are 1-5:
888 band1l = max(1, band1)
889 band2l = min(5, band2)
890
891
892 ! Initialise data:
893 skybr = 0.d0
894 mo = [ -10.93d0, -10.45d0, -11.05d0, -11.90d0, -12.70d0 ] ! Moon magnitudes(?)
895 bo = [ 8.0d-14, 7.0d-14, 1.0d-13, 1.0d-13, 3.0d-13 ] ! Dark sky (erg/s/cm^2/μ/arcsec^2)
896 cm = [ 1.36d0, 0.91d0, 0.00d0, -0.76d0, -1.17d0 ] ! UBVRI colour correction for the Moon
897 ms = [ -25.96d0, -26.09d0, -26.74d0, -27.26d0, -27.55d0 ] ! Sun magnitude
898
899 ! Air mass for the observed object:
900 objam = 1.d0/(sin(objalt) + 0.025d0*exp(-11.d0*sin(objalt)))
901
902 ! Air mass for the Moon:
903 if(moonalt.lt.0.d0) then ! Moon below the horizon
904 moonam = 40.d0
905 else
906 moonam = 1.d0/(sin(moonalt) + 0.025d0*exp(-11.d0*sin(moonalt)))
907 end if
908
909 ! Air mass for the Sun:
910 if(sunalt.lt.0.d0) then ! Sun below the horizon
911 sunam = 40.d0
912 else
913 sunam = 1.d0/(sin(sunalt) + 0.025d0*exp(-11.d0*sin(sunalt)))
914 end if
915
916
917 ! UBVRI (1-5) sky brightness for each band (erg/s/cm^2/μ/arcsec^2):
918 do iband=band1l,band2l
919
920 ! Dark night-sky brightness:
921 bn = bo(iband) * (1.d0 + 0.3d0*cos(pi2*dble(year-1992)/11.d0)) ! Solar cycle
922 bn = bn * (0.4d0 + 0.6d0/sqrt(1.d0-0.96d0*cos(objalt)**2))
923 bn = bn * 10.d0**(-0.4d0*extcoef(iband)*objam)
924
925 ! Moonlight brightness:
926 if(moonalt.ge.0.d0) then ! Moon is up
927 moonpa = (1.d0 - moonphase)*pi ! Approximate phase angle of the Moon (rad)
928 mm = moonmagn(moonpa,2.5696d-3) + cm(iband) ! Moon magnitude for mean distance (2.57e-3 AU) + colour correction
929
930 c3 = 10.d0**(-0.4d0*extcoef(iband)*moonam)
931
932 moonelonm = max(moonelon,4.36d-3) ! Elongation Moon-object (rad) - can't be <~0.25d ~ 4.36e-3 rad
933 fm = 1.888628d4/moonelonm**2 + 10.d0**(6.15d0 - moonelonm/0.6981317d0)
934 fm = fm + 10.d0**5.36d0 * (1.06d0 + cos(moonelonm)**2)
935
936 bm = 10.d0**( -0.4d0 * (mm - mo(iband) + 43.27d0) ) ! Brightness of the Moon (erg/s/cm^2/μ/arcsec^2)
937 bm = bm * (1.d0 - 10.d0**(-0.4d0*extcoef(iband)*objam))
938 bm = bm * (fm*c3 + 440000.d0*(1.d0-c3))
939 else
940 bm = 0.d0 ! No contribution from the Moon if below the horizon
941 end if
942
943 ! Twilight brightness (erg/s/cm^2/μ/arcsec^2):
944 bt = 10.d0**( -0.4d0*(ms(iband) - mo(iband) + 32.5d0 - sunalt*r2d - ((pio2-objalt)/(pi2*extcoef(iband))) ) )
945 bt = bt * (1.745329252d0/sunelon) * (1.d0 - 10.d0**((-0.4d0*extcoef(iband))*objam)) ! Correction from http://www.archaeocosmology.org/eng/vislimitbas.htm
946
947 ! Daylight brightness (erg/s/cm^2/μ/arcsec^2):
948 c4 = 10.d0**(-0.4d0*extcoef(iband)*sunam)
949 fs = 1.888628d4/sunelon**2 + 10.d0**(6.15d0 - sunelon/0.6981317d0)
950 fs = fs + 10.d0**5.36d0 * (1.06d0 + cos(sunelon)**2)
951 bd = 10.d0**(-0.4d0*(ms(iband) - mo(iband) + 43.27d0))
952 bd = bd * (1.d0 - 10.d0**(-0.4d0*extcoef(iband)*objam))
953 bd = bd * (fs*c4 + 440000.d0*(1.d0-c4))
954
955 ! Total sky brightness (erg/s/cm^2/μ/arcsec^2):
956 if(bd.lt.bt) then
957 skybr(iband) = bn + bd + bm ! Daylight
958 else
959 skybr(iband) = bn + bt + bm ! Twilight
960 end if
961
962 skybr(iband) = skybr(iband) / 1.02d-15 ! Convert sky brightness from erg/s/cm2/μ/arcsec^2 to nanolamberts. Should this be 1.02d-15 iso 1.11d-15? Or 4.54d-16? - http://www.archaeocosmology.org/eng/vislimitbas.htm
963
964 end do ! iBand
965
966 end subroutine limmag_skybrightness
967 !*********************************************************************************************************************************
968
969
970 !*********************************************************************************************************************************
971 !> \brief Calculate limiting magnitude based on JD and object altitude, wrapper for limmag_full()
972 !!
973 !! \param jd Julian day
974 !! \param objRA Right ascension of the observed object (rad)
975 !! \param objDec Declination of the observed object (rad)
976 !! \param objAlt Altitude of the observed object (rad)
977 !!
978 !! \param lat Latitude of the observer (optional; rad)
979 !! \param height Height/altitude of the observer above sea level (optional; metres)
980 !!
981 !! \retval limmag_jd Limiting magnitude
982 !!
983 !! \note Using observer's location from module TheSky_local; overruled by optional dummy variables lat and height
984
985 function limmag_jd(jd, objRA,objDec,objAlt, lat,height)
986 use sufr_kinds, only: double
987 use sufr_angles, only: asep
988 use sufr_date_and_time, only: jd2cal
989
992 use thesky_local, only: lat0, height0=>height
993
994 implicit none
995 real(double), intent(in), value :: jd, objra,objdec,objalt ! Often called as planpos(i) -> pass by value
996 real(double), intent(in), optional :: lat,height
997 integer :: year, month
998 real(double) :: limmag_jd, llat,lheight, day, sunalt,sunelon, moonphase,moonalt,moonelon, planpos0(nplanpos)
999
1000 ! Use values from TheSky_local by default:
1001 llat = lat0
1002 lheight = height0
1003
1004 ! Overrule with values from optional arguments if present:
1005 if(present(lat)) llat = lat
1006 if(present(height)) lheight = height
1007
1008
1009 call jd2cal(jd, year,month,day)
1010
1011 planpos0 = planpos ! Save current contents
1012
1013 call planet_position_la(jd, 3, 4, 0) ! Sun position - 4: need alitude
1014 sunalt = planpos(31) ! Sun altitude
1015 sunelon = asep(objra, planpos(5), objdec, planpos(6)) ! Sun elongation
1016
1017 call planet_position_la(jd, 0, 5, 60) ! Moon position - 4: need k; 60 terms
1018 moonphase = planpos(14) ! Moon phase (illuminated fraction, k)
1019 moonalt = planpos(31) ! Moon altitude
1020 moonelon = asep(objra, planpos(5), objdec, planpos(6)) ! Moon elongation
1021
1022 limmag_jd = limmag_full(year,month, lheight,llat, sunalt,sunelon, moonphase,moonalt,moonelon, objalt)
1023
1024 planpos = planpos0 ! Restore original contents
1025
1026 end function limmag_jd
1027 !*********************************************************************************************************************************
1028
1029
1030 !*********************************************************************************************************************************
1031 !> \brief Calculate limiting magnitude for the local zenith, based on JD and observer's location
1032 !!
1033 !! \param jd Julian day
1034 !! \param lat Latitude of the observer (rad)
1035 !! \param lon Longitude of the observer (rad)
1036 !! \param height Height/altitude of the observer above sea level (metres)
1037 !!
1038 !! \retval limmag_zenith_jd Limiting magnitude
1039
1040 function limmag_zenith_jd(jd, lat,lon,height)
1041 use sufr_kinds, only: double
1042 use sufr_constants, only: pio2
1043
1044 use thesky_datetime, only: calc_gmst
1045 use thesky_coordinates, only: horiz2eq
1046
1047 implicit none
1048 real(double), intent(in) :: jd, lat,lon,height
1049 real(double) :: limmag_zenith_jd, objalt, gmst, hh,objra,objdec
1050
1051 ! Compute the RA and dec corresponding to the local zenith at JD, lat and lon:
1052 objalt = pio2 ! Altitude of the zenith = pi/2
1053 gmst = calc_gmst(jd) ! Greenwich mean sidereal time
1054 call horiz2eq(0.d0,objalt, gmst, hh,objra,objdec, lat,lon) ! Use azimuth = 0, gmst iso agst
1055
1056 ! Compute the limiting magnitude for the desired JD and the RA, dec and alt corresponding to the zenith:
1057 limmag_zenith_jd = limmag_jd(jd, objra,objdec, objalt, lat,height)
1058
1059 end function limmag_zenith_jd
1060 !*********************************************************************************************************************************
1061
1062
1063 !*********************************************************************************************************************************
1064 !> \brief Calculate limiting magnitude based on JD and planet ID, wrapper for limmag_jd()
1065 !!
1066 !! \param jd Julian day
1067 !! \param pl Planet ID
1068 !!
1069 !! \retval limmag_jd_pl Limiting magnitude
1070 !!
1071 !! \note Using observer's location from module TheSky_local
1072
1073 function limmag_jd_pl(jd, pl)
1074 use sufr_kinds, only: double
1075
1078
1079 implicit none
1080 real(double), intent(in) :: jd
1081 integer, intent(in) :: pl
1082 real(double) :: limmag_jd_pl, objra,objdec,objalt, planpos0(nplanpos)
1083
1084 planpos0 = planpos ! Save
1085
1086 call planet_position_la(jd, pl, 6,10) ! Planet position
1087 objra = planpos(5) ! Object right ascension
1088 objdec = planpos(6) ! Object declination
1089 objalt = planpos(31) ! Object altitude - refracted
1090
1091 limmag_jd_pl = limmag_jd(jd, objra,objdec,objalt)
1092
1093 planpos = planpos0 ! Restore
1094
1095 end function limmag_jd_pl
1096 !*********************************************************************************************************************************
1097
1098
1099 !*********************************************************************************************************************************
1100 !> \brief Calculate limiting magnitude based on Sun altitude and object altitude (airmass). Assumes New Moon.
1101 !!
1102 !! \param month Month of the year
1103 !! \param sunAlt Altitude of the Sun (rad)
1104 !! \param sunAz Azimuth of the Sun (rad)
1105 !! \param objAlt Altitude of the observed object (rad)
1106 !! \param objAz Azimuth of the observed object (rad)
1107 !!
1108 !! \param lat Latitude of the observer (optional; rad)
1109 !! \param height Height/altitude of the observer above sea level (optional; metres)
1110 !!
1111 !! \retval limmag_sun_airmass Limiting magnitude
1112 !!
1113 !! \note Using observer's location from module TheSky_local; overruled by optional dummy variables lat and height
1114
1115 function limmag_sun_airmass(month, sunAlt,sunAz, objAlt,objAz, lat,height)
1116 use sufr_kinds, only: double
1117 use sufr_constants, only: d2r
1118 use sufr_angles, only: asep
1119 use sufr_date_and_time, only: jd2cal
1120
1121 use thesky_local, only: lat0, height0=>height
1122
1123 implicit none
1124 integer, intent(in) :: month
1125 real(double), intent(in), value :: sunalt,sunaz, objalt,objaz ! Often called as planpos(i) -> pass by value
1126 real(double), intent(in), optional :: lat,height
1127 integer :: year
1128 real(double) :: limmag_sun_airmass, llat,lheight, sunelon, moonphase,moonalt,moonelon
1129
1130 ! Use values from TheSky_local by default:
1131 llat = lat0
1132 lheight = height0
1133
1134 ! Overrule with values from optional arguments if present:
1135 if(present(lat)) llat = lat
1136 if(present(height)) lheight = height
1137
1138 year = 1998 ! Average year for solar activity (1992+5.5)
1139
1140 sunelon = asep(objaz, sunaz, objalt, sunalt) ! Sun elongation
1141
1142 ! No Moon:
1143 moonphase = 0.d0
1144 moonalt = -89*d2r
1145 moonelon = 179*d2r
1146
1147 limmag_sun_airmass = limmag_full(year,month, lheight,llat, sunalt,sunelon, moonphase,moonalt,moonelon, objalt)
1148
1149 end function limmag_sun_airmass
1150 !*********************************************************************************************************************************
1151
1152
1153 !*********************************************************************************************************************************
1154 !> \brief Calculate limiting magnitude, based on the altitude of the Sun. Simplified version of limmag_full()
1155 !!
1156 !! \param sunAlt Altitude of the Sun (rad)
1157 !!
1158 !! \retval limmag_sun Limiting magnitude
1159 !!
1160 !! \note
1161 !! - Mag depends only on sunAlt in rad
1162 !! - assume object in zenith, no moon (am=180), humidity 50%, T=10degC, lat=45deg, sn=1
1163 !!
1164 !! \see http://www.go.ednet.ns.ca/~larry/astro/vislimit.html,
1165 !! a JavaScript version of a BASIC program by Bradley E. Schaefer, Sky and Telescope, May 1998, p.57
1166
1167 function limmag_sun(sunAlt)
1168 use sufr_kinds, only: double
1169 use sufr_constants, only: r2d
1170
1171 implicit none
1172 real(double), intent(in) :: sunalt
1173 real(double) :: limmag_sun, dm,bn,bt,bd,bl,c1,c2,th
1174
1175 dm = 0.285667465769191d0 ! Extinction
1176 bn = 7.686577723230466d-14 ! Dark night sky brightness: no solar cycle, star in zenith
1177 bt = 10.d0**(-0.4d0*(-26.74d0 + 11.05d0 + 32.5d0 - sunalt*r2d )) * 0.12852345982053d0 ! Twilight brightness (erg/s/cm^2/μ/arcsec^2)
1178 bd = 9.456022312552874d-7 ! Daylight brightness
1179 bl = (bn + min(bd,bt))/1.02d-15 ! Total sky brightness in V, convert from erg/s/cm2/μ/arcsec^2 to nanolamberts. Should this be 1.02d-15 iso 1.11d-15? Or 4.54d-16? - http://www.archaeocosmology.org/eng/vislimitbas.htm
1180
1181 ! Visual limiting magnitude
1182 if(bl.lt.1500.d0) then
1183 c1 = 10.d0**(-9.8d0)
1184 c2 = 10.d0**(-1.9d0)
1185 else
1186 c1 = 10.d0**(-8.350001d0)
1187 c2 = 10.d0**(-5.9d0)
1188 end if
1189 th = c1*(1.d0 + sqrt(c2*bl))**2
1190
1191 limmag_sun = -16.57d0 - 2.5d0*log10(th) - dm ! Limiting magnitude
1192
1193 end function limmag_sun
1194 !*********************************************************************************************************************************
1195
1196
1197
1198
1199
1200 !*********************************************************************************************************************************
1201 !> \brief Compute the excess magnitude for planet pl at JD, considering Sun, Moon and airmass
1202 !!
1203 !! \param jd Julian day for moment of interest
1204 !! \param pl Planet ID (0-Moon, 1-Mer, 8-Nep, >10-comet
1205 !!
1206 !! \retval pl_xsmag The excess magnitude
1207 !!
1208 !! \note
1209 !! - The excess magnitude is defined as the magnitude of an object MINUS the limiting magnitude
1210 !! - xsmag < 0 - object is visible (in theory!) with the naked eye
1211 !! - The magnitude is corrected for extinction due to airmass, but for sea level
1212 !! - The limiting magnitude here solely depends on the Sun's altitude, simplified expression (especially, no Moon!)
1213 !! - This routine should be used as an indication only - no hard facts...
1214
1215 function pl_xsmag(jd, pl)
1216 use sufr_kinds, only: double
1217
1219 use thesky_planetdata, only: planpos
1220
1221 implicit none
1222 real(double), intent(in) :: jd
1223 integer, intent(in) :: pl
1224 real(double) :: pl_xsmag, objra,objdec,objalt
1225
1226 call planet_position_la(jd, pl, 4,60) ! Compute planet position
1227 objra = planpos(5) ! Object right ascension
1228 objdec = planpos(6) ! Object declination
1229 objalt = planpos(31) ! Object altitude - refracted
1230
1231 if(objalt.lt.0.d0) then ! Object is below the horizon
1232 pl_xsmag = 99.d0 - objalt ! Huge contrast, and worse if further below the horizon, for solvers
1233 else
1234 pl_xsmag = planpos(13) - limmag_jd(jd, objra,objdec,objalt) ! Magnitude - limiting magnitude
1235 end if
1236
1237 end function pl_xsmag
1238 !*********************************************************************************************************************************
1239
1240
1241 !*********************************************************************************************************************************
1242 !> \brief Compute the excess magnitude at JD, wrapper for pl_xsmag() for solvers.
1243 !! The planet ID pl0 is passed through module planetdata.
1244 !!
1245 !! \param jd Julian day for moment of interest
1246 !! \retval pl_xsmag_pl The excess magnitude
1247
1248 function pl_xsmag_pl(jd)
1249 use sufr_kinds, only: double
1250 use thesky_planetdata, only: pl0
1251
1252 implicit none
1253 real(double), intent(in) :: jd
1254 real(double) :: pl_xsmag_pl
1255
1257
1258 end function pl_xsmag_pl
1259 !*********************************************************************************************************************************
1260
1261
1262 !*********************************************************************************************************************************
1263 !> \brief Compute the excess magnitude for planet pl at JD, considering airmass and Sun alt - low-accuracy version of pl_xsmag()
1264 !!
1265 !! \param jd Julian day for moment of interest
1266 !! \param pl Planet ID (0-Moon, 1-Mer, 8-Nep, >10-comet
1267 !!
1268 !! \retval pl_xsmag_la The excess magnitude
1269 !!
1270 !! \note
1271 !! - The excess magnitude is defined as the magnitude of an object MINUS the limiting magnitude
1272 !! - xsmag < 0 - object is visible (in theory!) with the naked eye
1273 !! - The magnitude is corrected for extinction due to airmass, but for sea level
1274 !! - The limiting magnitude here solely depends on the Sun's altitude, simplified expression (especially, no Moon!)
1275
1276 function pl_xsmag_la(jd, pl)
1277 use sufr_kinds, only: double
1279 use thesky_planetdata, only: planpos
1280
1281 implicit none
1282 real(double), intent(in) :: jd
1283 integer, intent(in) :: pl
1284 real(double) :: pl_xsmag_la, extinction_magpam, sunalt
1285
1286 call planet_position_la(jd, 3, 4,0) ! Sun position
1287 sunalt = planpos(31) ! Refracted
1288
1289 call planet_position_la(jd, pl, 0,0) ! Planet position
1290
1291 if(planpos(31).lt.0.d0) then ! Object is below the horizon
1292 pl_xsmag_la = 99.d0 - planpos(31) ! Huge contrast, and worst if further below the horizon, for solvers
1293 else
1294 extinction_magpam = 0.2811d0 ! Extinction in magnitudes per unit airmass, at sea level
1295 pl_xsmag_la = (planpos(13) + extinction_magpam * airmass(planpos(30))) - limmag_sun(sunalt) ! (m + ext) - limmag; TRUE alt!
1296 end if
1297
1298 end function pl_xsmag_la
1299 !*********************************************************************************************************************************
1300
1301
1302 !*********************************************************************************************************************************
1303 !> \brief Compute the excess magnitude at JD, wrapper for pl_xsmag_la() for solvers.
1304 !! The planet ID pl0 is passed through module planetdata.
1305 !!
1306 !! \param jd Julian day for moment of interest
1307 !! \retval pl_xsmag_la_pl The excess magnitude
1308
1309 function pl_xsmag_la_pl(jd)
1310 use sufr_kinds, only: double
1311 use thesky_planetdata, only: pl0
1312
1313 implicit none
1314 real(double), intent(in) :: jd
1315 real(double) :: pl_xsmag_la_pl
1316
1318
1319 end function pl_xsmag_la_pl
1320 !*********************************************************************************************************************************
1321
1322
1323 !*********************************************************************************************************************************
1324 !> \brief Aperture diameter in centimetres needed to observe an object with given excess magnitude (0: no instrument needed)
1325 !!
1326 !! \param xsmag Excess magnitude: magnitude of an object MINUS limiting magnitude (>0: too weak for naked eye)
1327 !! \param pupil Pupil diameter (mm, default: 6)
1328 !! \param tc Transmission coefficient of the instrument (default: 0.8 = 80%)
1329 !!
1330 !! \retval aperture The aperture diameter (cm)
1331 !!
1332 !! \note This routine should be used as an indication only - no hard facts...
1333 !!
1334 !! \see
1335 !! - http://iovs.arvojournals.org/article.aspx?articleid=2161149 - Fig.3a
1336 !! - average pupil diameter at low light: 7 -> 5mm for 20- -> 80-year olds
1337 !! - use 6mm as default value
1338 !! - http://www.telescope-optics.net/functions.htm
1339 !! - default tc for amateur telescopes: ~80%
1340
1341 function aperture(xsmag, pupil, tc)
1342 use sufr_kinds, only: double
1343
1344 implicit none
1345 real(double), intent(in) :: xsmag
1346 real(double), intent(in), optional :: pupil, tc
1347 real(double) :: aperture, lpupil, ltc
1348
1349 ! Pupil size:
1350 lpupil = 6.d0 ! Default pupil diameter: 6mm
1351 if(present(pupil)) lpupil = pupil
1352
1353 ! Light-transmission coefficient:
1354 ltc = 0.8d0 ! Default tc for amateur telescopes ~80% (http://www.telescope-optics.net/functions.htm)
1355 if(present(tc)) ltc = tc
1356
1357 if(xsmag.le.0.d0) then
1358 aperture = 0.d0
1359 else
1360 aperture = lpupil * sqrt(10.d0**(xsmag/2.5d0) / ltc) / 10.d0 ! Aperture diameter in cm
1361 end if
1362
1363 end function aperture
1364 !*********************************************************************************************************************************
1365
1366
1367
1368 !*********************************************************************************************************************************
1369 !> \brief Convert naked-eye visual limiting magnitude (V) to sky surface brightness in (B) magnitudes per square arcsecond
1370 !!
1371 !! \param Mlim Naked-eye visual limiting magnitude (V)
1372 !! \retval skybrightness_mas2_from_mlim Sky surface brightness in (B) magnitudes per square arcsecond
1373 !!
1374 !! \see http://adsabs.harvard.edu/abs/1990PASP..102..212S
1375 !! \note Sky surface brightness is sometimes referred to as sqm (which is in fact a device to measure it)
1376
1377 elemental function skybrightness_mas2_from_mlim(Mlim)
1378 use sufr_kinds, only: double
1379
1380 implicit none
1381 real(double), intent(in) :: mlim
1382 real(double) :: skybrightness_mas2_from_mlim
1383
1384 if(mlim.lt.7.93d0) then
1385 skybrightness_mas2_from_mlim = 21.58d0 - 5*log10(10.d0**(1.586d0-mlim/5.d0) - 1.d0)
1386 else
1388 end if
1389
1390 end function skybrightness_mas2_from_mlim
1391 !*********************************************************************************************************************************
1392
1393
1394 !*********************************************************************************************************************************
1395 !> \brief Convert sky surface brightness in (B) magnitudes per square arcsecond to naked-eye visual limiting magnitude (V)
1396 !!
1397 !! \param skyBright Sky surface brightness in (B) magnitudes per square arcsecond
1398 !! \retval skybrightness_mlim_from_mas2 Naked-eye visual limiting magnitude (V)
1399 !!
1400 !! \see http://adsabs.harvard.edu/abs/1990PASP..102..212S
1401 !! \note Sky surface brightness is sometimes referred to as sqm (which is in fact a device to measure it)
1402
1403 elemental function skybrightness_mlim_from_mas2(skyBright)
1404 use sufr_kinds, only: double
1405
1406 implicit none
1407 real(double), intent(in) :: skybright
1408 real(double) :: skybrightness_mlim_from_mas2
1409
1410 skybrightness_mlim_from_mas2 = 7.93d0 - 5*log10(10.d0**(4.316d0-skybright/5.d0) + 1.d0)
1411
1412 end function skybrightness_mlim_from_mas2
1413 !*********************************************************************************************************************************
1414
1415 !*********************************************************************************************************************************
1416 !> \brief Convert sky brightness in candela per square meter to naked-eye visual limiting magnitude (V)
1417 !!
1418 !! \param cdm2 Sky brightness in cd/m^2
1419 !! \retval Naked-eye visual limiting magnitude (V)
1420 !!
1421 !! \note
1422 !! Adapted from Weaver (1947) and Garsteng (1986):
1423 !! - shift to match data by Weaver (1947): 7.930 -> 7.706; 4.305 -> 4.115;
1424 !! - use candela per square meter instead of nanolambert.
1425
1426 elemental function skybrightness_mlim_from_cdm2(cdm2)
1427 use sufr_kinds, only: double
1428
1429 implicit none
1430 real(double), intent(in) :: cdm2
1431 real(double) :: skybrightness_mlim_from_cdm2, nl, mlim
1432
1433 nl = skybrightness_nl_from_cdm2(cdm2) ! Convert from candela per square meter to nanolambert
1434
1435 mlim = 7.706d0 - 5*log10(1.d0 + 0.1122d0 * sqrt(nl)) ! b <= 1479 nL = Mlim>4.0
1436 if(nl.gt.1479) mlim = 4.115d0 - 5*log10(1.d0 + 0.001122d0 * sqrt(nl)) ! b > 1479 nL = Mlim<4.0
1437
1439 end function skybrightness_mlim_from_cdm2
1440 !*********************************************************************************************************************************
1441
1442
1443 !*********************************************************************************************************************************
1444 !> \brief Convert limiting visual magnitude to sky brightness in candela per square meter
1445 !!
1446 !! \param mlim Naked-eye visual limiting magnitude (V)
1447 !! \retval Sky brightness in cd/m^2
1448 !!
1449 !! \note Inverse of skybrightness_mlim_from_cdm2()
1450
1451 elemental function skybrightness_cdm2_from_mlim(Mlim)
1452 use sufr_kinds, only: double
1453
1454 implicit none
1455 real(double), intent(in) :: mlim
1456 real(double) :: skybrightness_cdm2_from_mlim, nl, cdm2
1457
1458 nl = ((10.d0**(-(mlim - 7.706d0)/5.d0) - 1.d0)/0.1122d0)**2 ! Mlim >= 4.0; b <= 1479 nL
1459 if(mlim.lt.4) nl = ((10.d0**(-(mlim - 4.115d0)/5.d0) - 1.d0)/0.001122d0)**2 ! Mlim < 4.0; b > 1479 nL
1460
1461 cdm2 = skybrightness_cdm2_from_nl(nl) ! Convert nanolambert to candela per square meter
1462
1464 end function skybrightness_cdm2_from_mlim
1465 !*********************************************************************************************************************************
1466
1467
1468
1469 !*********************************************************************************************************************************
1470 !> \brief Convert sky brightness in nanolambert to candela per square meter
1471 !!
1472 !! \param nL Sky brightness in nanolambert (nL)
1473 !! \retval Sky brightness in candela per square meter (cd/m^2)
1474
1475 elemental function skybrightness_cdm2_from_nl(nL)
1476 use sufr_kinds, only: double
1477 use sufr_constants, only: pi
1478
1479 implicit none
1480 real(double), intent(in) :: nl
1481 real(double) :: skybrightness_cdm2_from_nl
1482
1483 skybrightness_cdm2_from_nl = nl * 1d-5/pi
1484 end function skybrightness_cdm2_from_nl
1485 !*********************************************************************************************************************************
1486
1487
1488 !*********************************************************************************************************************************
1489 !> \brief Convert sky brightness in candela per square meter to nanolambert
1490 !!
1491 !! \param cdm2 Sky brightness in candela per square meter (cd/m^2)
1492 !! \retval Sky brightness in nanolambert (nL)
1493
1494 elemental function skybrightness_nl_from_cdm2(cdm2)
1495 use sufr_kinds, only: double
1496 use sufr_constants, only: pi
1497
1498 implicit none
1499 real(double), intent(in) :: cdm2
1500 real(double) :: skybrightness_nl_from_cdm2
1501
1502 skybrightness_nl_from_cdm2 = cdm2 * 1d5 * pi
1503 end function skybrightness_nl_from_cdm2
1504 !*********************************************************************************************************************************
1505
1506
1507end module thesky_visibility
1508!***********************************************************************************************************************************
Data to compute comet positions.
Definition modules.f90:322
logical, dimension(ncometsmax) cometdiedatp
This comet died at perihelion (true/false)
Definition modules.f90:331
real(double), dimension(ncometsmax, 9) cometelems
Orbital elements of the comets: 1: JD of epoch (often J2000), 2: Perihelion distance (AU?...
Definition modules.f90:332
Procedures for comets.
Definition comets.f90:23
subroutine cometgc(t, t0, comid, r, l, b, d)
Calc geocentric lbr coordinates for comet com at t1 (in Julian millennia Dynamical Time)
Definition comets.f90:265
Procedures for coordinates.
subroutine horiz2eq(az, alt, agst, hh, ra, dec, lat, lon)
Convert spherical horizontal coordinates (az, alt, agst) to spherical equatorial coordinates (hh,...
subroutine ecl_2_eq(l, b, eps, ra, dec)
Convert (geocentric) spherical ecliptical coordinates l,b (and eps) to spherical equatorial coordinat...
Date and time procedures.
Definition date_time.f90:49
real(double) function calc_gmst(jd, deltat)
Calculate Greenwich Mean Sidereal Time for any instant, in radians.
real(double) function gettz(jd, tz0, dsttp)
Returns time zone: tz0 (standard time) or tz0+1 (daylight-savings time)
Local parameters for libTheSky: location, date, time.
Definition modules.f90:56
integer month
Month of year of current instant.
Definition modules.f90:73
real(double) tz
Current value of time zone, taking into account DST (hours; >0 is east of Greenwich)
Definition modules.f90:67
real(double) height
Altitude of the observer above sea level (m)
Definition modules.f90:65
real(double) lat0
Latitude of the observer (rad)
Definition modules.f90:63
real(double) day
Day of month of current instant, with decimals if desired.
Definition modules.f90:70
integer year
Year CE of current instant.
Definition modules.f90:72
Procedures for the Moon.
real(double) function moonmagn(pa, delta)
Calculate the magnitude of the Moon.
Planet data, needed to compute planet positions.
Definition modules.f90:85
integer, parameter nplanpos
Number of entries in the planpos array.
Definition modules.f90:116
integer pl0
Remember a special planet.
Definition modules.f90:101
real(double), dimension(nplanpos) planpos
Planpos[] is an array with many different types of coordinates and related variables:
Definition modules.f90:192
Procedures for planets.
Definition planets.f90:23
subroutine planet_position(jd, pl, lat, lon, hgt, lbaccur, raccur, ltime, aber, to_fk5, assume_jde, lunar_theory, nutat, magmdl, verbosity)
Compute the position, distance, etc of a planet.
Definition planets.f90:63
subroutine planet_position_la(jd, pl, calc, nt, lat, lon)
Compute low-accuracy planet positions. Sun and Moon have dedicated routines, for planets abridged VSO...
Definition planets.f90:1227
Procedures to determine rise, transit and set times.
Definition riset.f90:24
subroutine riset(jd, pl, rt, tt, st, rh, ta, sh, rsalt, for_night, ltime, cwarn, converge)
Rise, transit and set times routine for Sun, Moon, planets and asteroids. This version recomputes pos...
Definition riset.f90:83
Procedures to determine the visibility of objects.
elemental real(double) function skybrightness_cdm2_from_nl(nl)
Convert sky brightness in nanolambert to candela per square meter.
subroutine planet_visibility_tonight(jd, pl, sunalt, plalt, comp, plvis, plazs, rts, tts, sts, ras, tas, sas, rscwarn)
Compute when a given planet is visible in a given night.
real(double) function transitalt(lat, dec)
Compute the transit altitude of an object with given declination for an observer with a given geograp...
elemental real(double) function skybrightness_cdm2_from_mlim(mlim)
Convert limiting visual magnitude to sky brightness in candela per square meter.
real(double) function best_planet_visibility(jd, pl)
Find a rough indication for the best moment (JD) to observe a planet on a given day (jd)....
real(double) function aperture(xsmag, pupil, tc)
Aperture diameter in centimetres needed to observe an object with given excess magnitude (0: no instr...
real(double) function airmass_la(alt)
Compute the airmass for a celestial object with a given apparent altitude; low-accuracy alternative f...
real(double) function extinction_fac(alt, ele)
Compute the extinction factor for an observer with given elevation and an object with given altitude.
subroutine limmag_skybrightness(year, sunalt, sunelon, moonphase, moonalt, moonelon, objalt, band1, band2, extcoef, skybr)
Calculate sky brightness based on Sun altitude and Moon phase.
elemental real(double) function skybrightness_nl_from_cdm2(cdm2)
Convert sky brightness in candela per square meter to nanolambert.
elemental real(double) function skybrightness_mas2_from_mlim(mlim)
Convert naked-eye visual limiting magnitude (V) to sky surface brightness in (B) magnitudes per squar...
real(double) function get_dra_obj(jd)
Compute the difference between a given right ascension and the RA of the Sun, used privately by best_...
real(double) function pl_xsmag_pl(jd)
Compute the excess magnitude at JD, wrapper for pl_xsmag() for solvers. The planet ID pl0 is passed t...
real(double) function extinction_mag(alt, ele)
Compute the extinction in magnitdes for an observer with given elevation and an object with given TRU...
real(double) function limmag_sun(sunalt)
Calculate limiting magnitude, based on the altitude of the Sun. Simplified version of limmag_full()
real(double) function extinction_magpam(ele)
Compute the extinction in magnitdes per unit airmass for an observer with given elevation.
real(double) function limmag_jd_pl(jd, pl)
Calculate limiting magnitude based on JD and planet ID, wrapper for limmag_jd()
real(double) function limmag_zenith_jd(jd, lat, lon, height)
Calculate limiting magnitude for the local zenith, based on JD and observer's location.
real(double) function airmass(alt)
Compute the airmass for a celestial object with a given TRUE altitude.
subroutine best_obs_date_ra(year, ra, accuracy, mon, dy)
Compute the best date in the year to observe an object with a given right ascension.
real(double) function pl_xsmag(jd, pl)
Compute the excess magnitude for planet pl at JD, considering Sun, Moon and airmass.
real(double) function limmag_full(year, month, obselev, obslat, sunalt, sunelon, moonphase, moonalt, moonelon, objalt, humid, airtemp, snrat, verbosity)
Calculate limiting magnitude based on Sun and Moon positions and phase, and on the altitude of the ob...
elemental real(double) function skybrightness_mlim_from_cdm2(cdm2)
Convert sky brightness in candela per square meter to naked-eye visual limiting magnitude (V)
real(double) function pl_xsmag_la_pl(jd)
Compute the excess magnitude at JD, wrapper for pl_xsmag_la() for solvers. The planet ID pl0 is passe...
subroutine limmag_extinction(month, obslat, obselev, objalt, relhum, temp, band1, band2, extcoef, extmag)
Calculate limiting magnitude based on Sun altitude and Moon phase.
logical function comet_invisible(jd, cometid, mlim, minalt)
Cheap function to determine whether a comet is invisible at a given time, based on a magnitude and al...
elemental real(double) function skybrightness_mlim_from_mas2(skybright)
Convert sky surface brightness in (B) magnitudes per square arcsecond to naked-eye visual limiting ma...
subroutine best_planet_xsmag(jdin, plid, jdout, xsmag, rscwarn)
Find the moment (JD) of optimal excess magnitude for a planet, i.e. the lowest mag - lim....
real(double) function limmag_sun_airmass(month, sunalt, sunaz, objalt, objaz, lat, height)
Calculate limiting magnitude based on Sun altitude and object altitude (airmass). Assumes New Moon.
real(double) function pl_xsmag_la(jd, pl)
Compute the excess magnitude for planet pl at JD, considering airmass and Sun alt - low-accuracy vers...
real(double) function limmag_jd(jd, objra, objdec, objalt, lat, height)
Calculate limiting magnitude based on JD and object altitude, wrapper for limmag_full()